Molecules Substrate Attribute b˜1 indicates that an enzyme is bound to substrate and b˜0 indicates no enzyme is bound Attributes Y1, Y2, and Y3 each refer to individual ITAMs. Each ITAM can be unphosphorylated (Y˜U), phosphorylated on one tyrosine (Y˜P), or doubly phosphorylated (Y˜2P) S(b~0~1,Y1~U~P~2P,Y2~U~P~2P,Y3~U~P~2P)
S
b
0
1
Y1
U
P
2P
Y2
U
P
2P
Y3
U
P
2P Kinase Phosphatase ZAP-70 Species Observables Szero S(b~?,Y1~U!?,Y2~U!?,Y3~U!?) Sone S(b~?,Y1~P!?,Y2~U!?,Y3~U!?) Stwo S(b~?,Y1~2P!?,Y2~U!?,Y3~U!?) Sthree S(b~?,Y1~2P!?,Y2~P!?,Y3~U!?) Sfour S(b~?,Y1~2P!?,Y2~2P!?,Y3~U!?)
S
b
?
Y1
? 2P
Y2
? 2P
Y3
? U Sfive S(b~?,Y1~2P!?,Y2~2P!?,Y3~P!?)
S
b
?
Y1
? 2P
Y2
? 2P
Y3
? P Ssix S(b~?,Y1~2P!?,Y2~2P!?,Y3~2P!?)
S
b
?
Y1
? 2P
Y2
? 2P
Y3
? 2P Reaction Rules ITAM 1 E(b) + S(b~0,Y1~U,Y2~U,Y3~U) <-> E(b!1).S(b~1,Y1~U!1,Y2~U,Y3~U)
E
⬇⬆ b
⬇⬆
S
b
0
1
take all branches, once each, in any order ⬇ ⬆
Y1
⬇⬆ U
Y2
U
Y3
U E(b!1).S(b~1,Y1~U!1,Y2~U,Y3~U) -> E(b) + S(b~0,Y1~P,Y2~U,Y3~U)
E
⬆ b
⬆
S
b
0
1
take one or more branches, once each, in any order ⬆
Y1
⬆ U
P
take all branches, once each, in any order ⬇
Y2
U
Y3
U F(b) + S(b~0,Y1~P,Y2~U,Y3~U) <-> F(b!1).S(b~1,Y1~P!1,Y2~U,Y3~U)
F
⬇⬆ b
⬇⬆
S
b
0
1
take all branches, once each, in any order ⬇ ⬆
Y1
⬇⬆ P
Y2
U
Y3
U F(b!1).S(b~1,Y1~P!1,Y2~U,Y3~U) -> F(b) + S(b~0,Y1~U,Y2~U,Y3~U)
F
⬆ b
⬆
S
b
0
1
take one or more branches, once each, in any order ⬆
Y1
U
⬆ P
take one or more branches, once each, in any order ⬆
Y2
U
Y3
U E(b) + S(b~0,Y1~P,Y2~U,Y3~U) <-> E(b!1).S(b~1,Y1~P!1,Y2~U,Y3~U)
E
⬇⬆ b
⬇⬆
S
b
0
1
take all branches, once each, in any order ⬇ ⬆
Y1
⬇⬆ P
Y2
U
Y3
U E(b!1).S(b~1,Y1~P!1,Y2~U,Y3~U) -> E(b) + S(b~0,Y1~2P,Y2~U,Y3~U)
E
⬆ b
⬆
S
b
0
1
take one or more branches, once each, in any order ⬆
Y1
⬆ P
2P
take all branches, once each, in any order ⬇
Y2
U
Y3
U F(b) + S(b~0,Y1~2P,Y2~U,Y3~U) <-> F(b!1).S(b~1,Y1~2P!1,Y2~U,Y3~U)
F
⬇⬆ b
⬇⬆
S
b
0
1
take all branches, once each, in any order ⬇ ⬆
Y1
⬇⬆ 2P
Y2
U
Y3
U F(b!1).S(b~1,Y1~2P!1,Y2~U,Y3~U) -> F(b) + S(b~0,Y1~P,Y2~U,Y3~U)
F
⬆ b
⬆
S
b
0
1
take one or more branches, once each, in any order ⬆
Y1
P
⬆ 2P
take one or more branches, once each, in any order ⬆
Y2
U
Y3
U ITAM 2 E(b) + S(b~0,Y2~U,Y1~2P,Y3~U) <-> E(b!1).S(b~1,Y2~U!1,Y1~2P,Y3~U)
E
⬇⬆ b
⬇⬆
S
b
0
1
take all branches, once each, in any order ⬇ ⬆
Y1
2P
Y2
⬇⬆ U
Y3
U E(b!1).S(b~1,Y2~U!1,Y1~2P,Y3~U) -> E(b) + S(b~0,Y2~P,Y1~2P,Y3~U)
E
⬆ b
⬆
S
b
0
1
take one or more branches, once each, in any order ⬆
Y1
2P
Y2
⬆ U
P
take all branches, once each, in any order ⬇
Y3
U F(b) + S(b~0,Y2~P,Y1~2P,Y3~U) <-> F(b!1).S(b~1,Y2~P!1,Y1~2P,Y3~U)
F
⬇⬆ b
⬇⬆
S
b
0
1
take all branches, once each, in any order ⬇ ⬆
Y1
2P
Y2
⬇⬆ P
Y3
U F(b!1).S(b~1,Y2~P!1,Y1~2P,Y3~U) -> F(b) + S(b~0,Y2~U,Y1~2P,Y3~U)
F
⬆ b
⬆
S
b
0
1
take one or more branches, once each, in any order ⬆
Y1
2P
Y2
U
⬆ P
take one or more branches, once each, in any order ⬆
Y3
U E(b) + S(b~0,Y2~P,Y1~2P,Y3~U) <-> E(b!1).S(b~1,Y2~P!1,Y1~2P,Y3~U)
E
⬇⬆ b
⬇⬆
S
b
0
1
take all branches, once each, in any order ⬇ ⬆
Y1
2P
Y2
⬇⬆ P
Y3
U E(b!1).S(b~1,Y2~P!1,Y1~2P,Y3~U) -> E(b) + S(b~0,Y2~2P,Y1~2P,Y3~U)
E
⬆ b
⬆
S
b
0
1
take one or more branches, once each, in any order ⬆
Y1
2P
Y2
⬆ P
2P
take all branches, once each, in any order ⬇
Y3
U F(b) + S(b~0,Y2~2P,Y1~2P,Y3~U) <-> F(b!1).S(b~1,Y2~2P!1,Y1~2P,Y3~U)
F
⬇⬆ b
⬇⬆
S
b
0
1
take all branches, once each, in any order ⬇ ⬆
Y1
2P
Y2
⬇⬆ 2P
Y3
U F(b!1).S(b~1,Y2~2P!1,Y1~2P,Y3~U) -> F(b) + S(b~0,Y2~P,Y1~2P,Y3~U)
F
⬆ b
⬆
S
b
0
1
take one or more branches, once each, in any order ⬆
Y1
2P
Y2
P
⬆ 2P
take one or more branches, once each, in any order ⬆
Y3
U ITAM 3 E(b) + S(b~0,Y3~U,Y2~2P,Y1~2P) <-> E(b!1).S(b~1,Y3~U!1,Y2~2P,Y1~2P)
E
⬇⬆ b
⬇⬆
S
b
0
1
take all branches, once each, in any order ⬇ ⬆
Y1
2P
Y2
2P
Y3
⬇⬆ U E(b!1).S(b~1,Y3~U!1,Y2~2P,Y1~2P) -> E(b) + S(b~0,Y3~P,Y2~2P,Y1~2P)
E
⬆ b
⬆
S
b
0
1
take one or more branches, once each, in any order ⬆
Y1
2P
Y2
2P
Y3
⬆ U
P
take all branches, once each, in any order ⬇ F(b) + S(b~0,Y3~P,Y2~2P,Y1~2P) <-> F(b!1).S(b~1,Y3~P!1,Y2~2P,Y1~2P)
F
⬇⬆ b
⬇⬆
S
b
0
1
take all branches, once each, in any order ⬇ ⬆
Y1
2P
Y2
2P
Y3
⬇⬆ P F(b!1).S(b~1,Y3~P!1,Y2~2P,Y1~2P) -> F(b) + S(b~0,Y3~U,Y2~2P,Y1~2P)
F
⬆ b
⬆
S
b
0
1
take one or more branches, once each, in any order ⬆
Y1
2P
Y2
2P
Y3
U
⬆ P
take one or more branches, once each, in any order ⬆ E(b) + S(b~0,Y3~P,Y2~2P,Y1~2P) <-> E(b!1).S(b~1,Y3~P!1,Y2~2P,Y1~2P)
E
⬇⬆ b
⬇⬆
S
b
0
1
take all branches, once each, in any order ⬇ ⬆
Y1
2P
Y2
2P
Y3
⬇⬆ P E(b!1).S(b~1,Y3~P!1,Y2~2P,Y1~2P) -> E(b) + S(b~0,Y3~2P,Y2~2P,Y1~2P)
E
⬆ b
⬆
S
b
0
1
take one or more branches, once each, in any order ⬆
Y1
2P
Y2
2P
Y3
⬆ P
2P
take all branches, once each, in any order ⬇ F(b) + S(b~0,Y3~2P,Y2~2P,Y1~2P) <-> F(b!1).S(b~1,Y3~2P!1,Y2~2P,Y1~2P)
F
⬇⬆ b
⬇⬆
S
b
0
1
take all branches, once each, in any order ⬇ ⬆
Y1
2P
Y2
2P
Y3
⬇⬆ 2P F(b!1).S(b~1,Y3~2P!1,Y2~2P,Y1~2P) -> F(b) + S(b~0,Y3~P,Y2~2P,Y1~2P)
F
⬆ b
⬆
S
b
0
1
take one or more branches, once each, in any order ⬆
Y1
2P
Y2
2P
Y3
P
⬆ 2P
take one or more branches, once each, in any order ⬆ ZAP70 binding Z(b) + S(Y1~2P) <-> Z(b!1).S(Y1~2P!1)
Z
⬇⬆ b
⬇⬆
S
b
0
? 1
Y1
⬇⬆ 2P
Y2
U
P
? 2P
Y3
U
P
? 2P Z(b) + S(Y2~2P) <-> Z(b!1).S(Y2~2P!1)
Z
⬇⬆ b
⬇⬆
S
b
0
? 1
Y1
U
P
? 2P
Y2
⬇⬆ 2P
Y3
U
P
? 2P Z(b) + S(Y3~2P) <-> Z(b!1).S(Y3~2P!1)
Z
⬇⬆ b
⬇⬆
S
b
0
? 1
Y1
U
P
? 2P
Y2
U
P
? 2P
Y3
⬇⬆ 2P